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Abstract—We consider the problem of choosing a set of
sensor measurements, from a set of possible or potential sensor
measurements, that minimizes the error in estimating some pa-
rameters. Solving this problem by evaluating the performance for
each of the possible choices of sensor measurements is not
practical unless and are small. In this paper, we describe a
heuristic, based on convex optimization, for approximately solving
this problem. Our heuristic gives a subset selection as well as
a bound on the best performance that can be achieved by any
selection of sensor measurements. There is no guarantee that
the gap between the performance of the chosen subset and the
performance bound is always small; but numerical experiments
suggest that the gap is small in many cases. Our heuristic method
requires on the order of � operations; for � 1000 possible
sensors, we can carry out sensor selection in a few seconds on a
2-GHz personal computer.

Index Terms—Convex optimization, experiment design, sensor
selection.

I. INTRODUCTION

W E study the problem of selecting sensors, from among
potential sensors. Each sensor gives a linear func-

tion of a parameter vector , plus an additive noise; we as-
sume these measurement noises are independent identically dis-
tributed zero-mean Gaussian random variables. The sensor se-
lection, i.e., the choice of the subset of sensors to use, affects
the estimation error covariance matrix. Our goal is to choose
the sensor selection to minimize the determinant of the estima-
tion error covariance matrix, which is equivalent to minimizing
the volume of the associated confidence ellipsoid. One simple
method for solving the sensor selection problem is to evaluate
the performance for all choices for the sensor selection, but
evidently this is not practical unless or is very small. For
example, with 100 potential sensors, from which we are to
choose , there are on the order of possible choices,
so direct enumeration is clearly not possible.

In this paper we describe a new method for approximately
solving the sensor selection problem. Our method is based on
convex optimization, and is therefore tractable, with computa-
tional complexity growing as . For , the method
can be carried out in a few seconds, on a 2-GHz personal com-
puter; for 100, the method can be carried out in millisec-
onds. The method provides both a suboptimal choice of sensors,
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and a bound on the performance that can be achieved over all
possible choices. Thus, we get a suboptimal design, and a bound
on how suboptimal it is. Numerous numerical experiments sug-
gest that the gap between these two is often small. Our basic
method can be followed by any local optimization method. We
have found, for example, that a greedy algorithm that considers
all possible swaps between the set of selected and unselected
sensors, accepting any swaps that improve the objective, can
give a modest improvement in the quality of the sensor selec-
tion. When this local search terminates it gives a 2-opt sensor
selection, i.e., one for which no swap of a selected and an uns-
elected sensor has better objective value.

1) Prior and Related Work: The sensor selection problem
arises in various applications, including robotics [2], sensor
placement for structures [3], [4], target tracking [5], [6],
chemical plant control [7], and wireless networks [8]. Sensor
selection in the context of dynamical systems is studied in, e.g.,
[9]–[11]. Sensor selection, with a rather different setup from
ours, has been studied in sensor network management [12],
hypothesis testing in a sensor network [13], and discrete-event
systems [14]. The sensor selection problem formulation we use
in this paper can be found in, e.g., [15]. The sensor selection
problem (and various extensions described in Section V) can be
formulated in an information theoretic framework [16]–[19],
and in a Bayesian framework [20], [21]. (We will comment on
this in more detail later.)

The complexity of a sensor selection problem (though not
the one we consider) is considered in [22], where the authors
show that it is NP-hard. (As far as we know, NP-hardness of the
sensor selection problem we consider has not been established.)
The sensor selection problem can be exactly solved using global
optimization techniques, such as branch and bound [23], [24].
These methods can, and often do, run for very long times, even
with modest values of and .

Several heuristics have been proposed to approximately solve
the sensor selection problem. These include genetic algorithms
[15], and application specific local search methods. Local opti-
mization techniques, similar to the one we describe, are summa-
rized in [25] and [26]. While these heuristics can produce good
suboptimal sensor selections, they do not yield any guarantees
or bounds on the performance that is achievable. In any case,
any local optimization method, including the ones described in
these papers, and generic methods such as randomized rounding
[27], can be incorporated into our method.

The sensor selection problem is closely related to the D-op-
timal experiment design problem [28], [29]. Here, too, we are
to choose a subset of possible measurements from a palette of
choices. In D-optimal experiment design, however, we consider
the case when and both grow, with a constant ratio; the
question is not which sensors to use, but how frequently to use
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each one. The standard convex relaxation for the D-optimal ex-
periment design problem (see, e.g., [30, Sec. 7.5]) leads to a
convex problem that is similar to ours, but different; we will
discuss the differences in more detail below.

Finally, we note that the idea of using convex relaxation as the
basis for a heuristic for solving a combinatorial problem is quite
old, and has been observed to give very good results in many
applications. Recent problems that are solved using this general
technique are compressed sensing [31], sparse regressor selec-
tion [32], sparse signal detection [33], sparse decoding [34], and
many others. Other applications that use convex relaxations in-
clude portfolio optimization with transaction costs [35], con-
troller design [36], and circuit design [37].

2) Outline: The rest of this paper is organized as follows. In
Section II, we formally describe the sensor selection problem. In
Section III, we describe the basic convex relaxation, an approx-
imate relaxation that can be solved even more efficiently, and
a local optimization method to improve the basic sensor selec-
tion. We illustrate the method, with and without local optimiza-
tion, with a numerical example, in Section IV. In Section V, we
describe a number of variations and extensions on the sensor
selection problem, than can be incorporated in the convex op-
timization framework, including different objective functions,
map estimation, constraints on sensors, and a robust version of
the sensor selection problem.

II. SENSOR SELECTION

A. Parameter Estimation

Suppose we are to estimate a vector from linear
measurements, corrupted by additive noise,

(1)

where is a vector of parameters to estimate, and
are independent identically distributed

random variables. We assume that , which charac-
terize the measurements, span . The maximum-likelihood
estimate of is

(2)

The estimation error has zero mean and covariance

The -confidence ellipsoid for , which is the minimum
volume ellipsoid that contains with probability , is given
by

(3)

where . ( is the cumulative distribution func-
tion of a -squared random variable with degrees of freedom.)

A scalar measure of the quality of estimation is the volume of
the -confidence ellipsoid

(4)

where is the Gamma function. Another scalar measure of un-
certainty, that has the same units as the entries in the param-
eter , is the mean radius, defined as the geometric mean of the
lengths of the semi-axes of the -confidence ellipsoid

(5)

We will be interested in volume ratios, so it is convenient to
work with the log of the volume

(6)

where is a constant that depends only on , , and . The log
volume of the confidence ellipsoid, given in (6), gives a quanti-
tative measure of how informative the collection of measure-
ments is.

B. Sensor Selection Problem

Now we can describe the sensor selection problem. We
consider a set of potential measurements, characterized by

; we are to choose a subset of of
them that minimizes the log volume (or mean radius) of the
resulting confidence ellipsoid. This can be expressed as the
optimization problem

maximize

subject to (7)

where is the optimization variable, and de-
notes the cardinality of . (We interpret
as if is singular.) We let denote the optimal
value of the sensor selection problem.

We can rewrite the problem (7) as

maximize

subject to

(8)

with variable . (The vector is the vector with all entries
one.) Here encodes whether the measurement (or sensor)
is to be used. This problem is a Boolean-convex problem, since
the objective is a concave function of for (see, e.g.,
[30, Sec. 3.1.5]), the sum constraint is linear, and the last
constraints restrict to be Boolean (i.e., 0–1).
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III. CONVEX RELAXATION

A. The Relaxed Sensor Selection Problem

By replacing the nonconvex constraints with the
convex constraints , we obtain the convex relaxation
of the sensor selection problem (7):

maximize

subject to

(9)

where is the variable. This problem, unlike the original
sensor selection problem (7), is convex, since the objective (to
be maximized) is concave, and the equality and inequality con-
straints on are linear. It can be solved efficiently, for example,
using interior-point methods [30]. These methods typically re-
quire a few tens of iterations; each iteration can be carried out
(as we will see below) with a complexity of operations,
so the overall complexity is operations. We will let
denote a solution of the relaxed problem (9).

The relaxed sensor selection problem (9) is not equivalent to
the original sensor selection problem (7); in particular, can
be fractional. We can say, however, that the optimal objective
value of the relaxed sensor selection problem (9), which we de-
note , is an upper bound on , the optimal objective value
of the sensor selection problem (8). To see this, we note that
the feasible set for the relaxed problem contains the feasible set
for the original problem; therefore, its optimal value cannot be
smaller than that of the original problem.

We can also use the solution of the relaxed problem (9) to
generate a suboptimal subset selection . There are many ways
to do this; but we describe here the simplest possible method.
Let denote the elements of rearranged in de-
scending order. (Ties can be broken arbitrarily.) Our selection
is then

i.e., the indexes corresponding to the largest elements of .
We let be the corresponding 0–1 vector. The point is feasible
for the sensor selection problem (8); the associated objective
value

is then a lower bound on , the optimal value of the sensor
selection problem (8).

The difference between the upper and lower bounds on ,

is called the gap. The gap is always nonnegative; if it is zero,
then is actually optimal for the sensor selection problem (8);
more generally, we can say that the subset selection is no more
than -suboptimal.

We can relate the gap , which is a difference of log-determi-
nants, to geometric properties of confidence ellipsoids. A gap
of corresponds to a ratio of in confidence ellipsoid
volume. In terms of the mean radius , a gap of corresponds
to a ratio .

Not much can be said about the gap, in general; for example,
there are no generic useful bounds on how large it can be. The
gap is, however, very useful when evaluated for a given problem
instance.

B. Relation to D-Optimal Experiment Design

Our sensor selection problem, and relaxed sensor selection
problem, are closely related to D-optimal experiment design. In
D-optimal experiment design, we have a set of potential mea-
surements or sensors. In this case, however, we can use any one
sensor multiple times; the problem is to choose which sensors to
use, and for each one, how many times to use it, while keeping
the total number of uses less than or equal to . In contrast, in
our sensor selection problem, we can use each potential sensor
at most once. One method for approximately solving the D-op-
timal experiment design problem is to form a convex relaxation,
that is the very similar to ours; however, the upper bound con-
straints are not present, and the relaxed variables are
normalized to have sum one (and not ); see, e.g., [30, Sec.
7.5]. The variables in the relaxed D-optimal experiment design
problem also have a different interpretation: is the frequency
with which sensor is to be used, when a large number of mea-
surements is made.

C. The Dual Problem

In this section we describe a dual for the relaxed sensor se-
lection problem, which has an interesting interpretation in terms
of covering ellipsoids. The dual of the relaxed sensor selection
problem is

minimize

subject to

(10)

with variables , , and . (The set of
symmetric matrices is denoted by .) See the Appendix for
the derivation.

This dual problem can be interpreted as the problem of
finding the minimum volume covering ellipsoid with outlier
detection; see [38], [39]. (This should not be surprising because
the dual of the D-optimal experiment design problem is the
minimum volume covering ellipsoid problem [30, 7.5.3].)

If are set to 0, the optimal solution and determine
the minimum volume ellipsoid, given by ,
that contains the points . When the variable is
positive, is allowed to be outside this ellipsoid, i.e., it is an
outlier. We now show that, at optimality, at most of the
are nonzero. This can be inferred in many ways. Let , ,
and be an optimal solution of the problem (10). The dual
variables are associated with the inequalities and by
complementary slackness we have
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Since all the are positive and sum to , at most of the
are 1 and thus at most of the are nonzero. Therefore, the
solution of the problem (10) determines a covering ellipsoid for
the points , with at most outliers.

D. Approximate Relaxed Sensor Selection

It is not necessary to solve the relaxed sensor selection
problem (9) to high accuracy, since we use it only to get the
upper bound , and to find the indexes associated with the
largest values of its solution. In this section we describe a
simple method for solving it approximately but very efficiently,
while retaining a provable upper bound on . This can be
done by solving a smooth convex problem, which is closely
related to the subproblems solved in an interior-point method
for solving the relaxed problem.

The approximate relaxed sensor selection problem is

maximize

subject to (11)

with variable . Here is a positive parameter that
controls the quality of approximation. In the approximate re-
laxed sensor selection problem, we have implicit constraints
that . The function is concave and smooth, so
the problem (11) can be efficiently solved by Newton’s method,
which we describe in detail below. Let denote the solution of
the approximate relaxed sensor selection problem (11).

A standard result in interior-point methods [30, Sec. 11.2] is
that is at most suboptimal for the relaxed sensor selec-
tion problem (9):

In particular, we can use

(12)

as an upper bound on .
We can use this bound to choose so that, in terms of ,

the increase in gap contributed by the term , which is a
factor of , is small, say, 1%. This corresponds to

.

Newton’s Method:

We now briefly describe Newton’s method for solving (11);
for full details, see, e.g., [30, Sec. 10.2]. As an initial (feasible)
point, we take . At each step, we compute the
Newton search step , which can be expressed as

(13)

We then use a backtracking line search to compute a step size
, and update by replacing it with . We

stop when the Newton decrement is small. The
total number of steps required is typically ten or fewer.

For completeness we give expressions for the derivatives of
. Its gradient is given by

where

The Hessian is given by

where denotes the Hadamard (elementwise) product and is
the measurement matrix

... (14)

We can give a complexity analysis for computing the Newton
step using (13). We first form , which costs

operations, and compute its Cholesky factor, which
costs . We then form and , which costs

. We compute its Cholesky factorization, which costs
(which dominates all other costs so far). Once we

have computed the Cholesky factorization of , we can
compute at cost . Thus, the overall cost is .
Moreover, the hidden constant is quite modest, since the cost is
dominated by the Cholesky factorization of an matrix,
which can be carried out in operations.

E. Local Optimization

The construction of a feasible selection from the solution
of the (approximate) relaxed problem (11) can be (possibly)
improved by a local optimization method. One simple method to
carry this out is to start from , and check sensor selections that
can be derived from by swapping one of the chosen sensors
(i.e., ) with one of the sensors not chosen. For
similar methods, see, e.g., Fedorov’s exchange algorithm [29],
[40] or Wynn’s algorithm [41].

We can determine whether a sensor swap increases the objec-
tive value more efficiently than by computing the new objective
value from scratch. Suppose we are to evaluate the change in ob-
jective value when sensor is removed from our selection, and
sensor (which was not originally chosen) replaces it. We let
denote the error covariance with the original subset selection
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and we let denote the error covariance when sensor is
swapped with sensor

Using the low-rank update formula for the determinant of a ma-
trix, we have

We can determine whether swapping and increases the ob-
jective, i.e., whether , by evaluating the
determinant of the 2 2 matrix

The computation effort required to calculate this matrix is
. (In contrast, computing from scratch requires
, so the savings here is .) A small gain in efficiency

can be obtained by recognizing

remembering the previously calculated products of the form
, and checking before calculating
.

Now we continue our description of the local optimization
method. Given the current sensor selection, we attempt a search
over all possible swaps. If we find that no swap in-
creases the objective value, the algorithm terminates. The so-
lution so obtained is called 2-opt, because exchanging any one
selected sensor with any unselected one will not improve the so-
lution.

If, however, we encounter a swap that increases the objective
value, we (greedily) update to correspond to the new sensor
selection, replacing by . The matrix can be evaluated effi-
ciently using the matrix inversion lemma (also known as Wood-
bury formula):

The computation effort required to calculate given is
. With the new sensor selection we restart the search

for an improving swap.
The local optimization algorithm must terminate because

there is only a finite number of sensor selections that are better
than the original one. The total number of local optimization
steps can be very large (in theory); so we can simply limit the
number of steps taken, say to . (We should mention that
we have never observed an example that requires a very large
number of local optimization steps.) If is chosen to grow
no faster than , then the total computational effort of the

local optimization method will be , the same as solving
the relaxed sensor problem.

More Sophisticated Local Optimization:

The local optimization method described above does not
use the solution of the (approximate) relaxed sensor selection
problem ; Instead it proceeds directly from the rounded
estimate . More sophisticated rounding methods can use the
approximate relaxed point . For example, in a randomized
rounding scheme, is interpreted as the probability of se-
lecting sensor . In the local optimization method, we can use

to order the sensors which are checked for possible swap-
ping. (In the local optimization described above, the sensors
are checked according to their index.) More Specifically, we
choose unselected sensors in descending order of the values,
and we pick the selected sensors in ascending order of the
values. The intuition behind this scheme is that a sensor with
higher is more likely to be in the globally optimal sensor
selection. To determine the ordering we need to sort the sensors
according to the values only one time, and then maintain the
ordering when a swap is taken. The initial sorting requires a
computation effort of , which for practical values
of and is dominated by the computational effort needed
to check the swaps. We can also restrict the swaps
to be among those sensors for which is in the interval

(or some interval, possibly symmetric, around ).
This drastically reduces the number of swaps to be checked
(and number of sensors to be sorted), and therefore speeds up
the local optimization.

IV. EXAMPLE

In this section, we illustrate the sensor selection method with
a numerical example. We consider an example instance with

potential sensors and parameters to es-
timate. The measurement vectors are chosen ran-
domly, and independently, from an distribution.
We solve the relaxed problem (11), with , and find
suboptimal subset selections, with and without local optimiza-
tion, for .

To solve each approximate relaxed problem requires 11
Newton steps, which would take a few milliseconds in a C
implementation, run on a typical 2-GHz personal computer.
For each problem instance, the (basic) local search checks
4000–12 000 sensor swaps, and around 3–20 swaps are taken
before a 2-opt solution is found. We also the run the restricted
version on the local search, which only considers sensors with

value in the interval . This local search produces
an equally good final sensor selection, while checking a factor
10–15 times fewer swaps than the basic method. (In any case,
the basic local search only takes milliseconds to complete, on a
typical personal computer, for a problem instance of this size.)

To show the quality of the sensor subsets chosen, we evaluate
the upper bound [given by (12)], the lower bound using
the simple selection rule, and the (possibly) better lower bounds

and obtained after local optimization and restricted
local optimization, respectively, for each value of . The top
half of Fig. 1 shows , , , and , and the bottom half
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Fig. 1. Top: Upper bound �� (top curve); lower bounds � and �
(middle curves); lower bound � (bottom curve). Bottom: Gap � (top curve);
� and � (bottom curves).

Fig. 2. Gaps expressed as ratios of mean radii: ��������� (top curve);
����� ���� and ����� ���� (bottom curves).

shows the gaps , , and
. We also express the gaps as the ratio of mean radii
, , and , in Fig. 2.

These plots show that very good sensor selections are ob-
tained. For example, with , the relaxation followed by
2-opt local optimization produces a design which is at most
5.3% suboptimal, as measured by mean radius of the confidence
ellipsoid. (This is only a bound; it is likely that the sensor se-
lection found is closer to optimal than 5.3%.) We can see that
restricted local optimization performs as well as basic local op-
timization; the two curves are barely distinguishable. (In the fig-
ures, the values corresponding to the basic local optimization are
shown by the dashed curve, and to the restricted local optimiza-
tion are shown by the dash-dotted curve.) To find the globally
optimally best sensor selection by direct enumeration would re-
quire evaluating the objective times, which is on the order
of times, and clearly not practical.

V. EXTENSIONS

A. Other Measures of Estimation Quality

So far we have used the volume of the confidence ellipsoid
as our measure of the quality of estimation obtained by a sensor
subset selection. Several other measures can be used instead of
this one.

Mean Squared Error:

The mean squared error in estimating the parameter is

The associated sensor selection problem can be expressed as the
optimization problem

minimize

subject to

with variable . The optimization problem obtained by
relaxing the 0–1 constraint is convex; see [30, Sec. 7.5]. (In the
context of experiment design, this measure leads to so-called
A-optimal experiment design.)

Worst Case Error Variance:

The variance of the estimation error in the direction ,
With , is

The worst case variance of the estimation error, over all direc-
tions, is

the maximum eigenvalue of . The associated sensor selection
problem can be expressed as the optimization problem

maximize

subject to

with variable . Relaxing the 0–1 constraint we obtain
a convex problem. (In the context of experiment design, this
measure leads to so-called e-optimal experiment design.)

1) Worst Case Coordinate Error Variance: The variance of
the th coordinate of the estimation error, , is . The
worst case coordinate error variance is the largest diagonal entry
of the covariance matrix. Choosing the sensor subset to mini-
mize this measure can be expressed as the problem

minimize

subject to

(15)
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with variable . Relaxing the 0–1 constraint we obtain a convex
problem.

In fact, the problem can be transformed to a semidefinite
program (SDP), and therefore efficiently solved. Writing the
problem (15) in epigraph form and relaxing the 0–1 constraint,
we obtain

minimize

subject to

with variables and . The vector is the vector
with 1 in the entry and 0 in the rest of the entries. This
problem is equivalent to

minimize

subject to

with variables and . (The symbol represents inequality
with respect to the positive semidefinite matrix cone.) This is
a semidefinite program.

B. Sensor Selection Constraints

Many constraints on the selection of the sensors can be repre-
sented as linear equalities or inequalities on the variable , and
so are easily incorporated into the convex relaxation. We de-
scribe some typical cases below.

1) Logical Constraints:
• “Only when” constraints. The constraint that sensor can

be chosen only when sensor is also chosen can be ex-
pressed as .

• “Not both” constraints. The constraint that sensor and
sensor cannot both be chosen can be expressed as

.
• “At least one of’” constraints. To require that one of sensor

or sensor be chosen, we impose the constraint
.

These are easily extended to more complex situations. For
example, to require that exactly two of the four sensors , ,

, and be chosen, we impose the linear equality constraint
.

2) Budget Constraints: In addition to limiting the number of
sensors chosen to , we can impose other resource limitations
on the sensor selection. Suppose that is some cost (say, in
dollars, power, or weight) associated with choosing sensor . We
can impose a budget constraint on the selection, i.e., a maximum
allowed cost for the selection, as , where is the
budget.

C. Vector Measurements

In our setup so far, each sensor gives a scalar measurement.
Now suppose the measurements are vectors, i.e., sensor
gives not one, but several scalar measurements of the param-
eters. The potential measurements are

where , . The measurement noises
are independent random variables, with distribution.
The sensor selection problem can be expressed as

maximize

subject to

with variable . Relaxing the 0–1 constraint we obtain a
convex problem. (The same problem can be also be obtained by
associating each component of with a separate measurement,
and adding constraints that require that if any scalar measure-
ment from is used, all must be.)

D. MAP Estimation

We have so far worked with maximum likelihood estimation.
We can easily extend the method to the Bayesian framework.
Suppose the prior density of is . The maximum a
posteriori probability (MAP) estimate of , with selected sen-
sors characterized by , is

The estimation error has zero mean and covariance

(16)

The problem of choosing sensors to minimize the volume of
the resulting -confidence ellipsoid reduces to

maximize

subject to

(17)

with variable . Relaxing the 0–1 constraint results in a
convex optimization problem.

Since the of the covariance matrix of a Gaussian
random variable is the entropy of the random variable (differing
by a constant), the problem (17) can be obtained via an in-
formation theoretic approach. Let be the sensor measure-
ment vector when sensors characterized by are chosen. The
problem of choosing sensors to minimize the entropy of the
random variable , or to maximize the mutual information
between and the resulting measurement vector , is the
problem (17).
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E. Estimating a Linear Function of the Parameters

Suppose the goal is to estimate , a linear
function of the parameter , where has rank .
The prior density of is , so the prior density of
is , where . The covariance of the error
of the MAP estimate of is , where is
given by (16). The problem of choosing sensors to minimize
the volume of the resulting confidence ellipsoid is

minimize

subject to

(18)

with variable .
Relaxing the constraints to yields

a convex problem. This relaxed problem can be solved directly
by the Newton’s method described in Section III-D, for which
we need the gradient and Hessian of the objective function. The
objective function is

where is

(To simplify notation we do not write explicitly as a function
of .) The gradient of the function is

The Hessian of the function is

which can be written compactly as

where

and is given by (14).
The problem (18) can also be solved by transforming it to a

standard one. We introduce a new variable, a lower triangular
matrix , and write the relaxed version of the problem
(18) as

minimize

subject to

lower triangular (19)

with variables and . The objective function
is

since is lower triangular. The constraint that the lower trian-
gular matrix is invertible is implicit, since the objective func-
tion requires that .

The matrix inequality

can be written as

which is equivalent to

(Here we use .)
The problem (19) is therefore equivalent to

maximize

subject to

lower triangular (20)

with variables and .
A similar approach can handle the problem of estimating a

linear function of the variable in the maximum likelihood
framework, but this requires additional technical conditions.

F. Robust Sensor Selection

In this section we consider the sensor problem with some un-
certainty in the measurement vectors. The uncertainty is char-
acterized by a given set in which the measurement matrix ,
given by (14), can take any value. In terms of , the objective
of the sensor selection problem (8) can be written as

where is the diagonal matrix with entries
.

In the robust sensor selection problem we choose sensors to
minimize the worst case mean radius of the resulting confidence
ellipsoid, which can be written as

maximize

subject to

(21)

with variables . The problem data is the set x .
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The objective function of the robust optimization is problem
(21), for , is the infimum of a family of concave functions,
and therefore concave. Thus, the problem (21), after relaxing the
0–1 constraints, is a convex optimization problem.

The relaxed robust sensor selection problem can be written as

maximize

subject to

for all

with variables and the symmetric (positive definite)
matrix . If the set is finite, this is a standard
convex optimization problem. If the set is not finite, which
usually is the case, the problem is a semi-infinite convex opti-
mization problem, which can be solved using various general
techniques, such as sampling; see, e.g., [42] and [43]. In some
cases (as we will see below), the semi-infinite problem can be
simplified and solved.

We now consider the specific uncertainty model

(22)

the semi-infinite constraint can represented as a (simple) linear
matrix inequality (LMI) constraint, thereby simplifying the ro-
bust sensor selection problem to a standard SDP. The constraint

can be written as . The semi-infinite
constraint in terms of and is

for all

Theorem 3.3 in [44, Sec. 3] implies that the above semi-infinite
quadratic matrix inequality holds if and only if the matrix in-
equality

is feasible for some . The matrix inequality is linear in ,
, and . The relaxed robust sensor selection for the uncertainty

model (22) is [see the equation at the bottom of the page], with
variables , , and .

G. Example

In this section, we consider an example that combines three
of the extensions. We consider a discrete-time linear dynamical
system

(23)

where is the state at time , and is the
dynamics matrix, which we assume is invertible. We have linear
noise corrupted measurements

(24)

where is the measurement at time , is
the measurement noise at time , and is the mea-
surement matrix. We assume the noise vectors are
independent identically distributed random variables.
The initial state has a prior probability density ,
and is independent of the noise vectors.

We consider the problem of choosing a set of (vector) mea-
surements out of the (vector) measurements of the state, in
order to minimize the mean squared error in estimating

. This corresponds to choosing a set of times (out of the
possible times) at which to obtain the measurements.

We can express the measurements as

...
...

...

The prior density of is , where
. The MAP estimation error for is zero

mean, with covariance

where characterizes the selected measurement times.
The problem of choosing times at which to take state mea-
surements, in order to minimize the resulting mean square esti-
mation error of , can be formulated as

minimize

subject to

(25)

maximize

subject to
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Fig. 3. Mean-square error versus time for the sample time selection character-
ized by ��.

where is variable. Relaxing the 0–1 constraints we obtain a
convex optimization problem, which can be transformed to the
semidefinite program

minimize

subject to

(26)

with variables and .
We now consider a numerical instance of the problem. We

take state dimension , measurement dimension ,
over time interval , out of which we are to choose

times. We take the covariance of to be .
The dynamics matrix has eigenvalues

i.e., a slowing growing, and a slowing decaying, oscillatory
modes. The entries of the matrix are chosen independently
from the uniform distribution on .

We solve the semidefinite program (26) using CVX[45] to
obtain the solution of the relaxed problem , and select the
times with the largest values of . The chosen times are

The objective value (mean square error) for this choice of
10 sample times is very close to the lower bound, given by
the optimal value of the problem (25), so our choice is near
globally optimal (and in particular, there is no need for local
optimization).

In Fig. 3 we plot the mean square estimation error of ,
given the chosen measurements up to time , which is given by

, where

where is the (0–1) sample time selection. This mean square
error drops after each measurement is taken. We can see that the
largest drop in mean square estimation error occurs during the
burst of measurements taken over the interval to ;
a small further improvement occurs in the last two time steps.

VI. CONCLUSION

The problem of choosing sensors or measurements, from
among a set of candidate measurements, in order to obtain the
best resulting estimate of some parameters, is in general a dif-
ficult combinatorial problem. We have shown, however, that
convex relaxation, followed by a local optimization method, can
often work very well. In particular, this method produces not
only a suboptimal choice of measurements, but also, a bound
on how well the globally optimal choice does. The performance
achieved by the suboptimal choice is often very close to the
global bound, which certifies that the choice is nearly optimal.
Our method does not give a prior guarantee on this gap; but each
time the method is used, on a particular problem instance, we get
a specific bound.

APPENDIX

DERIVATION OF THE DUAL PROBLEM

In this section we derive the dual of the relaxed sensor
selection problem (9). We introduce a new variable

and write the relaxed sensor selection
problem (9) as

minimize

subject to

(27)

with variables and (set of symmetric
matrices). To form the Lagrangian of the problem (27) we

introduced Lagrange multipliers for , for ,
for , and for . The Lagrangian
is

where , , , and . Rearranging
the terms, we get

The Lagrange dual function is given by
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if
otherwise

Minimum of over is bounded only if

Minimizing over yields . The Lagrange dual
function is [see the equation at the top of the page]. The dual
problem is

maximize

subject to

(28)

with variables , , , and . (The constraint , i.e.,
positive definite, is implicit.) The variable can be eliminated,
and we write the dual problem as

minimize

subject to

(29)

with variables , , and .
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